1	Supporting Information
2	for
3	Determination and Characterization of Oxy-Naphthenic Acids in Oilfield Wastewater
4	Beili Wang ¹ , Yi Wan ¹ *, Yingxin Gao ² , Min Yang ² , Jianying Hu ¹
5 6 7 8	¹ Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China ² Chinese Acad. Sci., State Key Lab Environ Aquat Chem, Ecoenviron Sci Res Ctr, Beijing 100085, Peoples R China
9	(Received)
10	
11	
12	This file includes: (1) Table S1, name, structure and retention time of model compounds, (2)
13	Table S2, IDLs of model compounds, (3) Table S3, MS/MS fragment ions and retention of
14	NAs, O ₃ -NAs and O ₄ -NAs in oilfield wastewater, (4) Table S4, MS/MS fragment ions and
15	retention of NAs, OH-NAs and (OH)2-NAs derivatized with dansyl chloride in oilfield
16	wastewater, (5) Figure S1, chromatography of model compounds in standard mixtures, (6)
17	Figure S2, chromatography of NAs in commercial mixtures and oilfield wastewater, (7)
18	Figure S3, recovery of model compounds with different eluent solvent, (8) Figures S4,
19	comparisons of recoveries of model compounds in different SPE cartridges, (9) Figures S5
20	and S6, MS/MS spectra of model oxy-NAs before or after derivatization with dansyl chloride,
21	(10) Figures S7, MS/MS spectra of extracts in oilfield wastewater before derivatization with
22	dansyl chloride, and (11) Figures S8, calibration curves for one ion from three commercial
23	mixtures.
24 25	

1 Table S1. Name, structure and retention time of model compounds in UPLC-QTOF-MS

2 analysis.

Name	CAS No.	Molecular	RT	Structure
		Weight	(min)	~
12-hydroxysteric acid	106-14-9	$C_{12}H_{24}O_3,$ MW= 300.2664	9.32	он
12-hydroxydodecanoic acid	505-95-3	$C_{18}H_{36}O_3,$ MW= 216.1725	4.87	но соон
12-oxochenodeoxycho lic acid	2458-08-4	$C_{24}H_{38}O_{5.}$ MW= 406.2719	4.44	СООН
				HO I I OH
2-hexyldecanoic acid	25354-97-6	$C_{16}H_{32}O_2,$ MW= 256.2402	11.05	СООН
cyclohexanecarboxylic acid	98-89-5	C ₇ H ₁₂ O _{2,} MW= 128.0837	3.31	Соон
1-Methyl-1-cyclohexa ne carboxylic acid	1123-25-7	$C_8H_{14}O_{2,}$ MW= 142.0994	4.18	Н ₃ С СООН
4-propylcyclohexanec arboxylic acid (<i>cis</i> - and <i>trans</i> - mixture)	943-29-3	$C_{10}H_{18}O_2$ (cis- and trans-), MW= 170.1307	5.05; 5.23	СООН
<i>trans</i> -4-tert-butylcyclo hexanecarboxylic acid	5962-88-9	C ₁₁ H ₂₀ O ₂ -butyl, MW= 184.1463	5.34	HOOC
cyclohexane pentanoic acid	943-29-3	$C_{11}H_{20}O_{2,}$ MW= 184.1463	5.84	Соон
<i>trans</i> -4-pentylcyclohe xane carboxylic acid	38289-29-1	C ₁₂ H ₂₂ O _{2,} MW= 198.1620	7.00	COOH CH2CH2CH2CH2CH3

1,2,3,4-tetrahydro-2-n aphthoic acid	53440-12-3	$C_{11}H_{12}O_{2,}$ MW= 176.0837	3.97	
dicyclohexylacetic acid	52034-92-1	$C_{14}H_{24}O_{2,}$ MW= 224.1776	7.88	СООН
1-pyrenebutyric acid	3443-45-6	$C_{20}H_{16}O_{2,}$ MW= 288.1150	6.25	
abietic acid	514-10-3	C ₂₀ H ₃₀ O _{2,} MW= 302.2246	10.98	
5-beta-cholanic acid	546-18-9	$C_{24}H_{40}O_{2,}$ MW= 360.3028	12.95	HO O
1-adamantane carboxylic acid	828-51-3	C ₁₁ H ₁₆ O _{2,} MW= 180.1150	4.70	Соон
1-adamantaneacetic acid	4942-47-6	C ₁₂ H ₁₈ O _{2,} MW= 194.1307	4.98	СООН

1 Table S2. Instrumental detection limits (IDLs), intra-batch precision and inter-batch precision

2	of UPLC-QTOF-MS	analysis o	of the	model	compounds	with	the	concentration	ranges	of
3	1-1000 μg/L.									

М			IDL	Intra-day	Inter-day	Calibration
MIC	odel compound		$(\mu g/L)$	RSDs ^a	RSD s ^b	r ²
oxy-NAs	$C_{18}H_{36}O_{3}$	Z=0	0.4	4.4	1.5	0.999
	$C_{12}H_{24}O_3$	Z=0	0.3	5.9	3.5	0.997
	$C_{24}H_{38}O_5$	Z=-10	1.0	2.8	3.0	0.999
NAs	$C_{16}H_{32}O_2$	Z=0	15	1.8	3.8	0.998
	$C_7H_{12}O_2$	Z=-2	4.9	2.0	8.1	0.981
	$C_8H_{14}O_2$	Z=-2	1.1	3.1	3.3	0.994
	$C_{10}H_{18}O_2$	Z=-2	11	3.7	2.8	0.996
	$C_{11}H_{20}O_2$	Z=-2	5.0	3.5	5.2	0.997
	$C_{11}H_{20}O_{2\text{-butyl}}$	Z=-2	0.6	3.2	5.9	0.998
	$C_{12}H_{22}O_2$	Z=-2	0.4	4.8	5.4	0.999
	$C_{11}H_{12}O_2$	Z=-10	0.9	3.8	8.3	0.999
	$C_{14}H_{24}O_2$	Z=-4	0.3	2.8	6.9	0.999
	$C_{20}H_{16}O_2$	Z=-14	1.0	6.9	8.3	0.995
	$C_{20}H_{30}O_2$	Z=-10	0.9	8.6	6.0	0.998
	$C_{24}H_{40}O_2$	Z=-8	0.6	8.3	9.8	0.98
	$C_{11}H_{16}O_2$	Z=-6	0.4	3.8	4.0	0.994
	$C_{12}H_{18}O_2$	Z=-6	0.3	2.3	4.8	0.998

Precursor	Collision	Retention		Z	Mass fragment ions			
ion	energy (eV)	time (min)	Compound		[M-H] ⁻	$[M-H-H_2O]^-$	[M-H-CO ₂] ⁻	$[M-H-H_2O-CO_2]^-$
		122122	СНО	0	283.2647			
		12.2-13.2	$C_{18} G_{2}$	0	(3.5 ppm)	-	-	-
283	20-30	6.8	CH.O.	2	283.2259	265.2129	239.2397	
285	20-30	0-8	C ₁₇ 11 ₃₂ O ₃	-2	(-4.9 ppm)	(15.1 ppm)	(9.2 ppm)	-
		5.6	C. H. O.	4	283.1904	265.1793	239.2017	221.1914
		5-0	C ₁₆ H ₂₆ O ₄	-4	(-1.8 ppm)	(-4.1 ppm)	(2.5 ppm)	(4.1 ppm)
		8 5 10 5	СЧО	2	225.1850			
	20.20	8.5-10.5	$C_{14}H_{26}O_2$	-2	(-2.2 ppm)	-	-	-
225		4.5-5	СЧО	4	225.1485	207.1382	181.1586	
223	20-30		$C_{13}I1_{22}O_{3}$	-4	(-2.7 ppm)	(-1.4 ppm)	(-3.3 ppm)	-
		2-3.5	$C_{12}H_{18}O_4$	-6	225.1135	207.1026	181.1228	163.1117
					(3.6 ppm)	(2.4 ppm)	(-0.6 ppm)	(-3.7 ppm)
		9-11	$C_{17}H_{30}O_2$	4	265.2158			
				-4	(-3.8 ppm)	-	-	-
265	15 25	(75	$C_{16}H_{26}O_3$	-6	265.1797	247.1695	221.1905	
203	15-25	0-7.5			(-2.6 ppm)	(-1.2 ppm)	(0 ppm)	-
		2.5	СЧО	0	265.1440	247.1335	221.1535	203.1443
		3-3	$C_{15}H_{24}O_{4}$	-0	(0 ppm)	(0.4 ppm)	(-3.2 ppm)	(3.4 ppm)
		0 11	СЧО	6	249.1853			
		0-11	$C_{16}\Pi_{26}O_{2}$	-0	(-0.8 ppm)	-	-	-
240	20.20	20-30 4-6	$C_{15}H_{22}O_{3}$	0	249.1490	231.1375	205.1591	
249	20-30			-0	(-0.4 ppm)	(-4.3 ppm)	(-0.5 ppm)	-
		2.2	СЧО	10	249.1130	231.1024	205.1227	187.1126
		2-3	$C_{14}\Pi_{18}O_{4}$	-10	(1.2 ppm)	(1.3 ppm)	(-1 ppm)	(1.6 ppm)

Table S3. Precursors, MS/MS fragment ions and retention time of NAs, O₃-NAs and O₄-NAs generated in MS/MS mode of QTOF-MS in
oilfield wastewater, and the MS/MS spectra with precursor ions of 225, 249 and 287 were showed in Figure 2.

		9-11.5	$C_{18}H_{28}O_2$	-8	275.2016 (1.8 ppm)	-	-	-
275	20.20	17		10	275.1650	257.1548	231.175	
	20-30	4-7	$C_{17}\Pi_{24}O_3$	-10	(1.1 ppm)	(2.3 ppm)	(0.4 ppm)	-
		2.4	СЦО	10	275.1289	257.1175	231.1385	213.1279
		3-4	$C_{16}\Pi_{20}O_4$	-12	(2.2 ppm)	(-1.2 ppm)	(0 ppm)	(0 ppm)
		05115	СНО	10	287.2008			
		9.3-11.3	$C_{19}\Pi_{28}O_2$	-10	(-1 ppm)	-	-	-
207	20.20	60 4-7	СЦО	10	287.1649	269.1538	243.1751	
287	20-30		$C_{18}\Pi_{24}O_{3}$	-12	(0.7 ppm)	(-1.5 ppm)	(0.8 ppm)	-
		3-4.5	C U O	14	287.1289	269.1185	243.1395	225.1290
			$C_{17}H_{20}O_4$	-14	(2.1 ppm)	(2.6 ppm)	(4.1 ppm)	(4.9 ppm)

Mass errors of fragmentation ions of 283.2259 were higher than 5 ppm possible due to the low abundance of the compounds.

Drequesor	Collision	•		1	Mass fragment ions			
ion	energy (eV)	Compound	Z	$[M+H]^+$	$[DNS]^+$	$[DNS-SO_3]^+$		
510	20.20	OH-C ₁₇ H ₃₁ O ₂ +DNS (C ₂₉ H ₄₃ NO ₅ S)	-2	518.2930 (-1.9 ppm)	-	171.1046 (-1.2 ppm)		
518	20-30	(OH) ₂ -C ₁₆ H ₂₆ O ₂ +DNS (C ₂₈ H ₃₉ NO ₆ S)	-4	518.2576 (0 ppm)	-	171.1045 (-1.8 ppm)		
460	20.20	OH-C ₁₃ H ₂₁ O ₂ +DNS (C ₂₅ H ₃₄ NO ₅ S)	-4	460.2157 (-0.2 ppm)	-	171.1050 (1.2 ppm)		
460	20-30	(OH) ₂ -C ₁₂ H ₁₆ O ₂ +DNS (C ₂₄ H ₃₀ NO ₆ S)	-6	460.1787 (-1.5 ppm)	-	171.1050 (1.2 ppm)		
500	20-30	OH-C ₁₆ H ₂₅ O ₂ +DNS (C ₂₈ H ₃₈ NO ₅ S)	-6	500.2478 (1.4 ppm)	-	171.1043 (-2.9 ppm)		
300		(OH) ₂ -C ₁₅ H ₂₂ O ₂ +DNS (C ₂₇ H ₃₄ NO ₆ S)	-8	500.2107 (0 ppm)	-	171.1044 (0.8 ppm)		
40.4	20-30	OH-C ₁₅ H ₂₁ O ₂ +DNS (C ₂₇ H ₃₄ NO ₅ S)	-8	484.2160 (0.4 ppm)	252.0697 (1.2 ppm)	171.1045 (-1.8 ppm)		
484		(OH) ₂ -C ₁₄ H ₁₆ O ₂ +DNS (C ₂₆ H ₃₀ NO ₆ S)	-10	484.1790 (-0.8 ppm)	252.0686 (-3.2 ppm)	171.1040 (-4.7 ppm)		
510	20.20	OH-C ₁₇ H ₂₃ O ₂ +DNS (C ₂₉ H ₃₆ NO ₅ S)	-10	510.2323 (1.8 ppm)	-	171.1040 (-4.7 ppm)		
510	20-30	(OH) ₂ -C ₁₆ H ₁₈ O ₂ +DNS (C ₂₈ H ₃₂ NO ₆ S)	-12	510.1948 (-0.4 ppm)	-	171.1040 (-4.7 ppm)		
522	20.20	OH-C ₁₈ H ₂₃ O ₂ +DNS (C ₃₀ H ₃₆ NO ₅ S)	-12	522.2327 (2.5 ppm)	252.0693 (-0.4 ppm)	171.1048 (-1.2 ppm)		
522	20-30	(OH) ₂ -C ₁₇ H ₁₈ O ₂ +DNS (C ₂₉ H ₃₂ NO ₆ S)	-14	522.1956 (1.1 ppm)	252.0700 (2.4 ppm)	171.1042 (-3.5 ppm)		

Table S4. Precursors and MS/MS fragment ions of OH-NAs and (OH)₂-NAs derivatized with dansyl chloride in oilfield wastewater, and the
MS/MS spectra with precursor ions of 460, 484 and 522 were showed in Figure 3.

1

Figure S1. Extracted ion chromatograms of model compounds in a standard mixture of 1 $\mu g/mL$ analyzed on a C18 column (1.7 μm , 2.1×50 mm, Waters BEH). C₁₀H₁₈O₂ (4-propylcyclohexanecarboxylic acid) was a mixture of *cis*- and *trans*- compounds, and C₁₁H₂₀O₂ showed a mixture of trans-4-tert-butylcyclohexanecarboxylic acid and cyclohexane pentanoic acid.

Figure S2. UPLC-QTOF-MS chromatograms of naphthenic acid mixtures in commercial
mixtures (A) and oilfield wastewater (B).

Figure S3 Effect of elute solvent on the recoveries of model compounds through WAXcartridge.

3 Figure S4. Comparisons of recoveries (%) of model compounds in HLB and WAX cartridges.

Figure S6. MS/MS spectra of model oxy-NAs derivatized with DNS.

Figure S7. MS/MS spectra of molecluars with precursor ions of 460 (a1-a2), 484 (b1-b2) and 523 (c1-c2) in extracts of oilfield wastewater without derivatization with DNS.

Figure S8. Calibration curves for three commercial mixtures of NAs by UPLC-QTOF-MS, the x-axis is based on total concentration of the NA mixtures. (a) total areas of NAs, (b) area of extracted ion 239.2011.